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Abstract
For a model system with a complex scalar field static topological solutions are
found analytically. Various domain wall structures are discussed and especially
the junction of three different domains (called Y-type junctions) is studied in
detail. It is shown that these junction structures are equivalent to a vortex with
winding number k = 1.

PACS numbers: 05.45.−a, 11.27.+d

1. Introduction

In many fields of physics topological defects (domain walls, vortices, strings, etc) are
recognized as being fundamentally important for the understanding of the dynamics and
thermodynamics (see, e.g., the general references [1–4]). The defects were studied quite early
in non-equilibrium systems [5, 6] as well as in field theoretic models, see [7–13]. Topological
defects with nontrivial core structure were invoked to explain the cosmological expansion
(inflation) [14, 15]. Stability and dynamics of vortices in a dark matter condensate were also
studied [16–18]. There are also a large number of investigations of the structure of topological
defects in various fields of physics, ranging from phase transitions in the core of defects [19]
to domain patterns in ferroelectrics [20] and ferroelastics [21, 22], not to mention several
studies on dislocations in pattern forming systems, see the early work in [23]. Some new
developments are found in such fields as singular optics [24], Bose–Einstein condensation of
dilute atomic gases [25], and magnetic nanostructures [26, 27]. Despite this large number of
interesting results, there are only the cases of special sine-Gordon models where single vortices
and vortex dipoles were studied by the inverse scattering method [28] and it is discussed that
the intersection of domain walls can be consistently described as a vortex structure [29, 30].
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The goal of this paper is to investigate topological defects in a two-component field theory
with three-fold rotation symmetry. In the model we analyse in this article, stable solutions
of this kind have the winding number k = 1 and we analytically show that our model has
an interesting behaviour near the junction point as well as asymptotically. In section 2 we
present the model, derive the Euler–Lagrange equations and discuss the properties of their
spatially homogeneous solutions. In section 3 we discuss the basic topological excitations
of the system: domain walls and vortices. In subsection 3.1, we study domain walls which
link different variant phases and show that the domain boundary between variants is described
by a kink-like solution for one component of the field and a pulse-like solution for the other
component. In subsection 3.2, we study domain wall junctions when three domain walls meet
at one point. We show that this type of excitation is characterized by a topological charge
equal to 1 and it may be considered as a vortex or more precisely as a ‘textured vortex’.
We study both near-field and far-field configurations. The latter is studied by using a new
asymptotic approach within a framework where the radial part of the Laplacian is neglected.
In appendix B we develop a collective-coordinate-like method which justifies the accuracy of
our approach.

2. Model and Euler–Lagrange equations

We consider a model with a scalar complex field φ(�r)= φ1(�r) + iφ2(�r) in two space
dimensions. The action is defined by

S =
∫

d�r
{

1

2
∂αφ∂αφ∗ + V (φ, φ∗)

}
. (1)

Here V = V (φ, φ∗) is the potential which we choose in the form

V (φ, φ∗) = − 1
2τ |φ|2 − 1

6 (φ3 + φ∗3) + 1
4 |φ|4, (2)

where τ > 0 is a dimensionless parameter. Action (1) is invariant under operations

φ → φ eiα 2π
3 , φ∗ → φ∗ e−iα 2π

3 , α = 0, 1, 2, . . . (3)

of the Z(3) group, which is of importance in solid state physics [31] and in non-Abelian gauge
theories where it is the centre of the SU(3) group (see, for example, [32, 33]). In the Landau
theory of ferroelastic phase transitions, the function (2) represents the elastic free energy of (i)
triangle–rectangle transition with φ1 and φ2 being the two components of shear strain [21, 22]
or (ii) cubic–tetragonal ferroelastics with φ1 and φ2 being the two components of the deviatoric
strain [35, 36]. Note that this corresponds to a homogeneous elastic problem (and thus the
elastic compatibility constraint is automatically satisfied and other components of the strain
tensor are not involved). However, for the Y-junctions discussed below we have a spatially
inhomogeneous structure near the centre and the elastic compatibility constraint cannot be
neglected in general. For small bulk modulus materials it is a good approximation to neglect
this constraint. Besides, here we are interested in a general discussion of these complex fields
and thus we describe an unconstrained model and defer the study of the effect of constraints
to a later paper. The dimensionless parameter τ has the meaning of a temperature-dependent
elastic constant. Other applications may include QCD where action (1) describes a system
which contains only gluons but no other particles [8, 37].

By introducing the current �J :

�J = (φ1∂xφ2 − φ2∂xφ1, φ1∂yφ2 − φ2∂yφ1, 0), (4)
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we may observe that the quantity

Q =
∫

A

dx dy(∂xφ1∂yφ2 − ∂xφ2∂yφ1), (5)

where A is the area of the system, can be expressed as a circulation around the boundary
curve C:

Q =
∫

A

dx dy( �∇ × �J )z = 1

2

∮
C

�J · d�r. (6)

Thus, the quantity Q plays a role of charge and can be considered as a topological invariant.
By using the new variables

φ1 = ε cos �, φ2 = ε sin � (7)

where ε =
√

φ2
1 + φ2

2 is the amplitude and � = arctan (φ2/φ1) is the phase, the potential
function (2) takes the form

V = −τ

2
ε2 − 1

3
ε3 cos(3�) +

1

4
ε4. (8)

The potential energy has a maximum at

φ1 = φ2 = 0, (9)

and three minima which form an equilateral triangle:

(φ1, φ2) = ε0 (cos �, sin �), ε0 ≡ 1 +
√

1 + 4τ

2
, � = 0, 2π/3, 4π/3. (10)

These three minima represent three vacuum (ground) states which are separated by the three
saddle points

(φ1, φ2) = |ε1| (cos �, sin �), ε1 ≡ 1 − √
1 + 4τ

2
, � = π/3, π, 5π/3. (11)

The spatial structure of the system is determined by the Euler–Lagrange equations

−∇2φ1 − τφ1 − φ2
1 + φ2

2 +
(
φ2

1 + φ2
2

)
φ1 = 0,

−∇2φ2 − τφ2 + 2φ1φ2 +
(
φ2

1 + φ2
2

)
φ2 = 0. (12)

Next, we find some specific solutions of these equations.

3. Topological defects

Topologically stable nonlinear excitations in situations with degenerate ground state include
domain walls and vortices.

3.1. Domain walls

Let us analyse the domain walls linking two variant phases. We are interested in the solutions
which depend on one spatial coordinate x. As was first shown in [34], there is a notable special
case here: τ = 2. For this temperature, the saddle point with � = π (φ1 = −1, φ2 = 0) lies on
the straight line which connects two minima with � = 2π/3 and 4π/3 (φ1 = −1, φ2 = −√

3
and φ1 = −1, φ2 = √

3).
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For τ = 2 the first of equations (12) has a solution φ1 = −1 and the equation for φ2 takes
the form

∂2
xφ2 + 3φ2 − φ3

2 = 0. (13)

The solution of equation (13) which satisfies the boundary conditions φ2 → ±√
3 when

x → ±∞ has the form of kinks, i.e.

φ2(x) =
√

3 tanh

(√
3

2
x

)
. (14)

Another two pairs of domain walls linking two phases may be obtained from equations (13)
by rotating the coordinate system through the angles π/3 and 2π/3.

When the temperature τ deviates from this particular value: τ = 2− δ where |δ| < 1, one
can use a perturbation approach based on the fact that for small δ a deviation of the function
φ1(x) from the constant value is also small.

After lengthy but straightforward calculations (see appendix A for details), we obtain
that the domain boundary between two variants in the temperature interval τ : |2 − τ | < 1 is
described by a kink-type solution for φ2(x) of the form

φ2(x) =
√

3

(
1 − 2 − τ

6

)
tanh

(√
1 + τ

2
x

)
, (15)

and a pulse-type solution for the component φ1(x):

φ1(x) = −1 +
2 − τ

9

{
1 + 2 cosh2

(√
1 + τ

2
x

)
ln

(
2 cosh

(√
1 + τ

2
x

))

−
√

1 + τ

2
x

(
1 + 2 cosh2

(√
1 + τ

2
x

))
tanh

(√
1 + τ

2
x

)}
. (16)

The height of the pulse is proportional to the temperature difference 2 − τ . For τ < 2 the field
φ1 represents a bright soliton while for τ > 2 equation (16) gives a dark soliton. Figure 1
presents the structure of the corresponding φ1(x), φ2(x) variant–variant domain walls. It
is seen that their profiles coincide with the ones obtained in [35, 38] by direct numerical
simulations of equations (A1).

3.2. Y-type junctions

In this subsection, we consider the case when three phases coexist. It was shown in [39] that
in systems with three equivalent ground states three interfaces can meet, creating a ‘triple
junction’ with the angle 2π/3 between them. Given that a stable intersection exists1, we
would like to find an analytic solution to the Euler–Lagrange equations (12) which describes
a ‘Y intersection’ or as we rightly term it a ‘textured vortex’. The aim of this subsection is to
show that this solution is vortex-like with topological charge equal to 1.

In terms of the polar variables (7) action (1) has the form

S =
∫

d�r
{

1

2
((∇ε)2 + ε2(∇�)2)) − 1

2
τε2 − 1

3
ε3 cos(3�) +

1

4
ε4

}
. (17)

1 Preliminary results of our numerical studies of relaxation dynamics of the relevant Landau–Ginzburg model with
a two-component order parameter: shear and deviatoric strains in triangular lattices (see [22] for a more detailed
description of the model) show that the lattices with very small bulk modulus may evolve to a Y-junction-like structure
if a seed with a winding number k = 1 is used as an initial configuration.
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Figure 1. The variation of the real (φ1) and imaginary (φ2) parts of the field in the domain wall
linking two variant phases for the special case τ = 1.

Euler–Lagrange equations for the quantities ε and � are

−∇2ε + ε(∇�)2 − τε − ε2 cos(3�) + ε3 = 0, (18)

−∇(ε2∇�) + ε3 sin(3�) = 0. (19)

Vortex-like structures described by equations (18) and (19) are characterized by the non-
vanishing value of the invariant (5) which can be written in the form

Q =
∮
C
ε2∇� · d�r, (20)

or by the so-called winding number (topological charge) k = 1, 2, 3, . . . which is determined
from the condition∫

	

(∂x� dx + ∂y� dy) = 2πk, (21)

where 	 is an arbitrary contour surrounding the centre of the vortex.
It is convenient to use the polar coordinates

x = r cos χ, y = r sin χ. (22)

In what follows we restrict ourselves to the case of vortices with k = 1. This means that
we solve equations (18) and (19) under the boundary conditions

ε(0, χ) = 0, ε(r, χ + 2nπ/3) = ε(r, χ),

�(r, χ + 2nπ/3) = �(r, χ) + 2nπ/3, n = 0, 1, 2, . . . .
(23)

Note that when the third-order nonlinear term in action (1) is absent, equation (18) has a radially
symmetric solution ε(r, χ) = ε(r), while equation (19) has the solution �(r, χ) = kχ . The
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existence of the third-order invariant makes a radially symmetric solution impossible for ε and
the dependence of ε on azimuthal angle χ must be taken into account. It can be achieved by
seeking the solutions of equations (18) and (19) in the form of Fourier series

�(r, χ) = χ +
∞∑

j=1

ψj(r) sin(3jχ), ε(r, χ) =
∞∑

j=0

εj (r) cos(3jχ). (24)

With this Ansatz (24) the boundary conditions (23) are automatically satisfied. Let us consider
the near-field distribution, i.e., the behaviour near the centre of the vortex (x2 + y2 → 0).
Substituting (24) into equations (18), (19) and restricting our consideration to first terms in
the Fourier expansions (24), we find that

�(r, χ) = χ + ψ1(r) sin(3χ) + · · · , ψ1(r) = a2
1 + 6a2

6a1
r3 + O(r5), (25)

ε(r) = ε0(r) + ε1(r) cos(3χ) + · · · , ε0 = a1r − a1

8
τr3 + O(r5),

ε1(r) = a2r
4 + O(r6),

(26)

where all terms rn (n � 5) are neglected. The constants aj (j = 1, 2) are determined below
by matching the expansion (24) and asymptotic expansion for r � 1.

The asymptotic behaviour of ε(r) as r → ∞ or in other words the far-field behaviour
may be established from (18) by putting ∇ε = 0 and ∇� = 0, and for τ > 1 to a good
approximation it has the form

ε(r) = cos 3� +
√

4τ + cos2 3�

2
≈ √

τ +
1

2
cos 3�, (27)(

∂2
r +

1

r
∂r

)
� +

1

r2
∂2
χ� = √

τ sin 3�. (28)

Note that in equation (28) we neglected the term sin 6� because in the range of parameters
under consideration (τ > 1) it does not change the qualitative behaviour of the phase
function �.2

As a first step let us neglect the radial part of the Laplacian operator (the first two terms
in the lhs of equation (28)) and consider the truncated sine-Gordon equation

∂2
χ� = √

τr2 sin 3�. (29)

As a result, we obtain

�(r, χ) = −π

3
+

2

3
am

(√
3

m
τ 1/4rχ

∣∣∣∣∣m
)

. (30)

Here am(u|m) is the Jacobian amplitude elliptic function with modulus m [40]. The modulus
m is determined from the boundary conditions (23) by the equation

τ 1/4r =
√

3m

π
K(m), (31)

2 It is interesting to note that the function � obtained from the angular part of the two-dimensional sine-Gordon
equation (i.e. by neglecting the radial part of the Laplacian operator) describes the angular dependence with very
good accuracy. We used this approach for the case of tetragonal systems when the rhs of equation (28) is sin 4� and
for which an exact vortex-like solution with the winding number equal to 1 is known (see, e.g., [43]). Comparing this
solution with an approximate one obtained within the framework of the same approach as we used in this paper we
found out that for r � 2 they differ by 0.3%.
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and function (30) takes the form

�(r, χ) = −π

3
+

2

3
am

(
3

π
χK(m)

∣∣∣∣m
)

, (32)

where K(m) is the complete elliptic integral of the first kind [40]. Introducing equation (30)
into equation (27) we get

ε = √
τ − 1

2
+ sn2

(√
3

m
τ 1/4rχ

∣∣∣∣∣m
)

. (33)

To check the accuracy of our approximation we used a collective-variable-like approach
(see appendix B for details). As a result we find that for r > 1 the inclusion in the analysis of
the radial part of Laplace operator leads to the following modification of relation (31):

K ≈ πrτ 1/4

√
3

(
1 +

π2

36r2τ 1/2

)−1/2

. (34)

Thus to a good accuracy equation (34) for r � 1 agrees with relation (31) obtained by
neglecting the radial part of the Laplacian operator.

Let us now match the near-field and far-field expansions. As it is seen from equation (26)
the function ε0(r) has a maximum at r = rc ≡ 81/2 (3τ)−1/2. Therefore, it seems
reasonable to use this point as a matching point. From equation (31) we obtain that for
r = rc,mc = 4τ 1/2r2

c

/
3, and for τ � 1,mc 
 1. Therefore for r = rc, the amplitude

function in the far field (33) can be approximately presented as

ε(r, χ) ≈ √
τ − 1

2 cos(3χ). (35)

In the same way, the phase function in the far field (30) can be presented as

�(r, χ) ≈ χ +
mc

12
sin(3χ). (36)

Comparing equation (35) and equation (26), we obtain that

a1 ≈ 3
√

3

4
√

2
τ, a2 ≈ − 9

128
τ 2. (37)

Inserting now equation (37) into equation (25) and comparing the result for ψ1(rc) with the
result with the corresponding coefficient in equation (36), we see that their relative difference(

ψ1(rc) − mc

12

)/ (
ψ1(rc) +

mc

12

)
< 10−1,

which is quite reasonable when it is considered that we used only the first two terms in the
near-field expansion (26).

Figure 2 represents the phase � from equation (32) and the components of the vector
(cos �, sin �) for two different distances from the centre of the vortex. Figures 3 and
4 represent the corresponding vector fields. Thus, the textured-vortex solution given by
equations (30) and (33) describes three co-existing phases. Near-field configurations have
a clear vortex (antivortex) structure which does not differ significantly from the no-third-
order-nonlinearity case when � = ±χ . However, in the long-distance limit the role of the
third-order nonlinearity is crucial. Due to the existence of this term the two-dimensional
space is divided into three domains (variants). Each pair of variant phases is separated by a
semi-infinite domain wall which emanates from the centre of the structure. Figure 5 shows

the χ dependence of the quantity ε =
√

φ2
1 + φ2

2 for r = 6. Note that the far-field behaviour of
the amplitude function ε(r, χ) (see figure 5) is similar to cnoidal dark solitons in the nonlinear
Schrödinger model.
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Figure 2. The azimuthal angle � and the vector-field components (X, Y ) = (cos �, sin �) for the
three-domain wall junction structures, as functions of the polar angle χ (in rad). The left column
corresponds to the distance r = 1 from the junction; the right column corresponds to r = 6.
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− 3
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− 1

0

1
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Figure 3. Vector-field distribution (in Cartesian coordinates) for the three-domain wall junction
with the topological charge equal to 1.

We conclude that our interpolating functions seemed to work quite well and this will be
further investigated in a subsequent paper where we study numerical and dynamical effects.
To summarize, we have found analytic solutions for domain wall and Y-junction topological
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Figure 4. Vector-field distribution for the three-domain wall junction with the topological charge
equal to −1.

1 2 3 4 5 6
χ

0.5

1

1.5

2

∋

Figure 5. The variation of the modulus of the complex scalar field ε = |φ| for the case of a
three-domain wall junction.

defects in a two-component field theory with three-fold rotation symmetry. These results are
of general interest in solid state physics, high energy physics and many other physical contexts.
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Appendix A

Let us consider the domain walls when the temperature τ deviates from the special case value:
τ = 2 − δ, where |δ| < 1. We study the case when the domain wall which separates the two
variants is parallel to the y-axis. In this case, the Euler–Lagrange equations (12) take the form

−∂2
xφ2 − τφ2 + 2φ1φ2 +

(
φ2

1 + φ2
2

)
φ2 = 0,

−∂2
xφ1 − τφ1 + φ2

2 − φ2
1 +

(
φ2

1 + φ2
2

)
φ1 = 0.

(A1)

It is more convenient to re-normalize our set of variables:

φ2(x) =
√

3

4
(1 +

√
1 + 4τ)g2(x), φ1(x) = −1 +

√
1 + 4τ

4
+ g1(x). (A2)

The new variables g1, g2 for all values of δ satisfy the boundary conditions

g2(x) → ±1, g1 → 0 when x → ±∞. (A3)

It is clear that for small δ the function g1(x) is also small. Introducing the new variables (A2)
into equations (A1) and expanding them in a series with respect to δ and g1(x), we obtain

∂2
xg2 + (3 − δ)g2

(
1 − g2

2

) = 0, (A4)

∂2
xg1 − 3

(
1 + g2

2

)
g1 +

δ

2

(
1 − g2

2

) = 0, (A5)

where the terms δngm
2 with n + m � 2 have been omitted. The solution of equation (A4) which

satisfies the boundary condition (A3) has the form

g2(x) = tanh

(√
3 − δ

2
x

)
. (A6)

In the temperature interval |τ + 2| ≡ |δ| < 1 the equation for g1(y), after rescaling the

spatial variable x =
√

2
3−δ

z, has the form

− d2

dz2
g1 − 6

3 − δ

1

cosh2 z
g1 +

12

3 − δ
g1 − δ

3 − δ

1

cosh2 z
= 0. (A7)

Let us consider the eigenvalue problem

−ψ ′′ − U(z)ψ = λψ, U = − 6

3 − δ
sech2(z). (A8)

It is well known [42] that the number of discrete levels in the potential U in equation (A8) is
equal to the largest integer satisfying the inequality

N <
1

2

(√
24

3 − δ
+ 1 − 1

)
. (A9)

When δ = 0 there is only one discrete level λ = −1 and the second level appears when
δ � 2. Therefore, for all δ < 2 there is only one discrete level in the potential U. Note that
the condition for the appearance of the second level coincides with the condition that the point
φ1 = φ2 = 0 becomes a saddle point (τ = 0). Thus, restricting ourselves to the case of
small δ, we can safely neglect it in the potential U. (The eigenfunctions and eigenvalues do
not change qualitatively in this case.) When δ = 0 equation (A8) has the following set of
eigenfunctions and eigenvalues:

ψ =
√

2

sech z
, λ = −1,

ψk = 1√
2π

tanh z − ik

1 − ik
eikz, λk = k2 (−∞ < k < ∞).

(A10)
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In the same approximation, equation (A5) can be written as

− d2

dz2
g1 − 2

cosh2 z
g1 + 4g1 − δ

3

1

cosh2 z
= 0. (A11)

Using the eigenfunction expansion of the function g2

g2 = aψ +
∫ ∞

−∞
akψk dk, (A12)

and introducing it in equation (A11), we obtain

a = πδ

18
√

2
, ak = δ

6

√
π

2

ik2

(k2 + 4)(k2 + 1)

1

sinh
(

kπ
2

) . (A13)

Inserting the coefficients (A13) into the expansion (A12) and calculating corresponding
integrals, we obtain the expression for the function g1 in the form

g1 = δ

18
(−1 + 4 cosh2 z ln(2 cosh z) − 2z(1 + 2 cosh2 z) tanh z). (A14)

Appendix B

The aim of this appendix is to check the accuracy of the solution given by equations (30)
and (31). We have used the fact that equation (28) is the Euler–Lagrange equation for the
functional

Fsg = 1

2

∫ ∞

0
dρ

∫ 2π

0
dχ ρ

{
(∂ρ�)2 +

1

ρ2
(∂χ�)2 +

2

3
(1 − cos(3�))

}
, (B1)

with ρ = τ 1/4r , and as a second step of our procedure we used equation (32) as a trial function
for the functional (B1) with the modulus m(ρ) being a collective variable which is to be
determined. By introducing equation (32) into equation (B1) and carrying out an integration
over the variable χ we obtain

Fsg−v = π

∫ ∞

0
dρ ρ

{
1

2
L2(m)

(
dm

dρ

)2

+ U(ρ,m)

}
, (B2)

where L(m) is an effective radial dispersion length given by

L2(m) = 2

9m2(1 − m)2K

∫ K

0
du(Z(u|m) − m sn(u|m) cd(u|m))2 dn2(u|m), (B3)

and

U(ρ,m) = 4

π2ρ2
EK +

4

3

E − (1 − m)K
mK

(B4)

is an effective potential. In equations (B3) and (B4) pq(u|m) (p, q = d, c, n, s) are Jacobi
elliptic functions and Z(u|m) is Jacobi’s Zeta function; K and E are complete elliptic integrals
of first and second kind, respectively [40].

Taking into account the definition of Jacobi’s Zeta function [40]

Z(u|m) = E(u|m) − u
E
K

, (B5)

where E(u|m) is the incomplete elliptic integral of the second kind:

d

du
E(u|m) = dn2(u|m), (B6)
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and carrying out a few integrations by part, we get

L2 = 1

m2(1 − m)2

2E
9K

(T1 + T2) , (B7)

T1 = E
K

− 2 − m

3
− 1 − m

3

K
E

, (B8)

T2 = 1

K

∫ K

0
Z2(u|m) du = π2

2K2

∞∑
n=1

1

sinh2(nξ)
, ξ ≡ ln q = π

K′

K
. (B9)

Here the q series for Jacobi’s Zeta function [40] was used. To evaluate the sum in equation (B9)
we use the relation between Weierstrass’ ζ and ℘ functions and Jacobi’s θ1 function [41]

ζ(2ωv) = 2ζ(ω)v +
1

2ω

d

dv
ln θ1(v),

−2ω℘(2ωv) = 2ζ(ω) +
1

2ω

d2

dv2
ln θ1(v),

(B10)

where 2ω is the real primitive period. Combining equation (B10) with the equation [41]

θ1(v) = 2q1/4 sin πv

∞∏
n=1

(1 − qn)(1 − 2q2n cos 2πv + q4n), (B11)

we get

−4ω2℘ (2ωv) = 4ωζ(ω) + π2
∞∑

n=−∞

1

sinh2(nξ + inv)
. (B12)

Then in the limit v → 0 from equation (B12) we obtain
∞∑

n=1

1

sinh2 nξ
= 1

6
− 2

π2
ωζ(ω) = 1

6

(
1 +

θ ′′′
1 (0)

π2θ ′
1(0)

)
, (B13)

where the relation [41]

ζ(ω) = − 1

12ω

θ ′′′
1 (0)

θ ′
1(0)

was used. Inserting equations (B13) into equation (B9) yields

L2(m) = 1

m2(1 − m)2

2

9K

(
E2

K
− 2 − m

3
E − 1 − m

3
K +

π2E
12K2

(
1 +

θ ′′′
1 (0)

π2θ ′
1(0)

))
. (B14)

It is worth noting, however, that this expression, despite being exact, is not so useful.
Since we are mostly interested in the asymptotic m → 1 behaviour, we derive an approximate
expression for the function (B9). In the limit m → 1, ξ → 0 and the function 1/ sinh2 nξ has
a double pole. By applying the regularization procedure

∞∑
n=1

1

sinh2 nξ
=

∞∑
n=1

1

n2ξ 2
+

∞∑
n=1

(
1

sinh2 nξ
− 1

n2ξ 2

)
(B15)

we may use the Euler–Maclaurin summation formula [40] for the second sum in equation (B15)
and get

∞∑
n=1

1

sinh2 nξ
= π2

6ξ 2
+

∫ ∞

0
dn

(
1

sinh2 nξ
− 1

n2ξ 2

)

− 1

2

(
1

sinh2 nξ
− 1

n2ξ 2

)∣∣∣∣
n→0

= π2

6ξ 2
− 1

ξ
+

1

6
. (B16)
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Inserting equation (B16) into equation (B9) we obtain

T2 = π2

12K′2 − π

2KK′ +
π

12K2
. (B17)

Combining equations (B8), (B17) and (B7) we obtain the following expression for the effective
dispersion length L2(m):

L2(m) = 2

9m2(1 − m)2

E
K

(
π2

12K′2 − E′

K′ +
1 + m

3
+

π2

12K2
− 1 − m

3

K
E

)
. (B18)

This approximate dispersion length agrees very well with the exact one for m � 0.7. In the
limit m → 1 when K ≈ 0.5 ln(16/(1 − m)), equation (B18) reduces to

L2(m) = π2

54m2(1 − m)2
(K−3 + O(1 − m)). (B19)

The Euler–Lagrange equation for the function m(ρ) is

− 1

ρ

d

dρ

(
ρL2(m)

dm

dρ

)
+ L

dL

dm

(
dm

dρ

)2

+
∂U

∂m
= 0. (B20)

For large r when (1−m) 
 1, we obtain from equation (B20) that the function K(m) satisfies
the equation

1

ρ

d

dρ

(
ρ

K3

dK
dρ

)
+

3

2K4

(
dK
dρ

)2

− 18

π2

(
3

π2ρ2
− 1

K2

)
= 0. (B21)

It is straightforward to see that the asymptotic behaviour of the function Q = 1/K2 is
given by

Q = 3

π2ρ2
+

1

12ρ4
+ O(ρ−6), K ≈ πρ√

3

(
1 +

π2

36ρ2

)−1/2

. (B22)

Thus, with a good accuracy equation (B22) for r � 1 agrees with relation (31) obtained by
neglecting the radial part of the Laplacian operator.
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